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Abstract

NASA and the US Geological Survey (USGS) are seeking
to generate a map of the entire globe using Landsat 5 The-
matic Mapper (TM) and Landsat 7 Enhanced Thematic Map-
per Plus (ETM+) sensor data from the “mid-decadal” period
of 2004 through 2006. The global map is comprised of thou-
sands of scene locations and, for each location, tens of dif-
ferent images of varying quality to chose from. Furthermore,
it is desirable for images of adjacent scenes be close together
in time of acquisition, to avoid obvious discontinuities due
to seasonal changes. These characteristics make it desirable
to formulate an automated solution to the problem of gen-
erating the complete map. This paper formulates a Global
Map Generator problem as aConstraint Optimization Prob-
lem (GMG-COP) and describes an approach to solving it us-
ing local search. Preliminary results of running the algorithm
on image data sets are summarized. The results suggest a sig-
nificant improvement in map quality using constraint-based
solutions.

Introduction and Motivation
NASA and USGS are partnering to produce high quality im-
age maps of the Earth’s landmass using Landsat 5 Thematic
Mapper (TM) and Landsat 7 Enhanced Thematic Mapper
Plus (ETM+) sensor data from the mid-decadal period of
2004 through 2006. The map will be composed of roughly
9500 WRS1 Landsat scene locations for which there are of-
ten tens of images available to select from. Eventually, over
300,000 images must be evaluated and down-selected to cre-
ate the final survey data set. The resulting data map will
be distributed to the public at no charge through a USGS
website. In addition to providing benefits to researchers in
the Earth sciences, it will likely become the next genera-
tion backdrop for Google-Earth (which currently uses the
GeoCover-2000 data set).
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1Landsat 5 and 7 follow the Worldwide Reference System 2
(WRS-2) coordinate system for indexing locations on the Earth
where data is acquired. WRS-2 indexes a location via a set of paths
and rows, with a 16-day repeat cycle. Landsat 5 follows the WRS-
2 system with a temporal offset of 8 days relative to Landsat 7.
The WRS-2 indexes orbits (paths) and scene centers (rows) into a
global grid system (daytime and night time) of 233 paths by 248
rows. We refer to each path, row element as ascene location.

A collection of diverse criteria defines a high quality im-
age map. First, a good map will typically consist of the best
(most cloud-free) image data available per scene. Second,
each image is assigned a Normalized Difference Vegetation
Index (NDVI) as a metric of the health and density of vege-
tation on a patch of land. For Earth Science applications, im-
ages with high NDVI are typically preferred. Third, to be us-
able for regional scientific studies, it is preferable to choose
image data that are seasonally consistent with neighboring
scenes. Fourth, to accommodate land-cover/land-use change
analysis, consideration must be given to the seasonality of
previous survey data sets. Finally, because of a malfunction
in the image scanner on Landsat 7 since 2003, ETM+ pro-
duces imagery that has coverage discontinuities such that an
individual image covers only 78% of the land area. To com-
pensate, two images of the same scene taken on different
days are combined to produce a composite image that par-
tially or fully closes the gaps. Pairs of images of a common
scene must therefore be chosen to maximize coverage (min-
imize gap), which means the two scenes should be mutually
out of phase. Each image is assigned a “gap–phase statis-
tic”, or GPS, which is an absolute measure of the geometric
registration of the image scan line with respect to the scene
center point. Such GPS values are used to compute the area
coverage of composite images.

The size of the solution space, as well as the number of
criteria for quality, make it desirable to develop automated
solutions to the problem of generating high quality global
image maps. The map generation problem can be naturally
viewed as aConstraint Optimization Problem. This paper
presents a formulation of the map generation problem, and
describes an approach to solving the problem using local
search. Section 2 describes the criteria for evaluating the
quality of solutions. Section 3 summarizes related work and
complexity issues, and Section 4 describes a local search
approach to solving the problem. Section 5 summarizes pre-
liminary experimental results.

GMG-COP
Global Map Generation (GMG) can be viewed as aCon-
straint Optimization Problem(GMG-COP) (Larrosa &
Dechter 2003), with a set of variablesV = {vi,j} indexed
by WRS-2 path and row numberi, j. Each variablevi,j

represents a scene location, and is associated with ado-



main Di,j = {di,j,1, . . . , di,j,m}, where eachdi,j,k rep-
resents a TM or ETM+ image taken of the corresponding
scene. There are binary links with the 4 neighboring scenes,
designatednorth(vi,j−1), east(vi−1,j), south(vi,j+1), and
west(vi+1,j ). A solution is a complete assignment of im-
ages (a single TM or a pair of ETM+) for each variable.

The GMG problem is an example of a multiobjective op-
timization problem, in which a set of potentially competing
preference criteria are used to evaluate and compare solu-
tions. The preference criteria are the following:

1. Single image criteria:

• Minimize cloud cover;
• Maximize NDVI value;
• Seasonality with previous data sets;
• Relative preference for acquiring L7 versus L5 images.

2. ETM+ composite criteria:

• Minimize gaps in data that remain from compositing
image pairs;
• Minimize the difference in the days the composited im-

ages were acquired.

3. Criteria relating pairs of adjacent images:

• Minimize the difference in the days the images were
acquired;
• Minimize the difference between the days in the year

(ignoring the year) the images were acquired.

Each image is represented as a vector of “meta-data” com-
prised of the following text fields: the WRS-2 scene path
and row numbers, the sensor that acquired the image (TM
or ETM+), the acquisition date, the cloud cover assessment,
the NDVI metric, and a GPS value used for evaluating the
scene area coverage that results from compositing two im-
ages. In addition, a preference date is given. This date
is to be used in our future work to gear our solver toward
solutions with minimum perturbations from these preferred
dates.

Each meta-data element is associated with a function that
is used to evaluate solution quality. We normalize by con-
sideringmeritvalues in the range[0, 1] where0 is worst and
1 is best. This way the objective function is a maximization
and always positive. The quality of an individual image can
be depicted in terms of two functions, related to the NDVI
merit value, and to cloud cover:ndvi : D → [0, 1], and
acca : D → [0, 1]. Second, there are two functions associ-
ated with measuring the time difference between the acqui-
sition of pairs of images:Absolute Day Difference, date∆ :
D×D→ [0, 1] is the number of days between image acqui-
sition, andDay of Year Difference, doy∆ : D ×D → [0, 1]
is the gap in days (ignoring the year in which it was ac-
quired). The latter function is used to reward solutions that
assign images that are seasonally similar, regardless of year,
whereas the former rewards solutions with pairs of images
taken in the same year. Third, the functionArea Coverage,
cover : D×D → [0, 1] assigns a value that indicates good-
ness of fit between pairs of images used in a composite. Fi-
nally, to express relative preferences for TM or ETM+ im-
ages, the functionIsL5 : D → {0, 1}, IsL7 : D → {0, 1}

assign 1 to images acquired by TM (respectively, ETM+),
and 0 otherwise.

A solutions to the GMG COP is a set of assignmentss =
{vi,j ← 〈di,j,k, di,j,l〉}, where by conventiondi,j,k is the
base imageanddi,j,l is thefill image. The pair represents the
composition of L7 images; thus if the base is a TM image,
hence requiring no fill, we setdi,j,l = di,j,k by convention.
For an arbitrary solutions, we writebs(vi,j), fs(vi,j) for the
base and fill values for the scenevi,j assigned bys.

The WRS organization of scene locations into path and
row induces a grid or lattice structure to the GMG-COP. Be-
cause of the symmetry of adjacency, it suffices to represent
this notion in terms of the functionsnorth : V → V and
east : V → V , which return the variable corresponding to
the scene that is north (east) of the designated variable.

The set of solutions can be ordered in terms of the objec-
tive of maximizing individual scene quality while maximiz-
ing phase difference between bases and fills and minimizing
the temporal differences between (the bases of ) adjacent im-
ages. Given an arbitrary solutions, its score is the value of
the following weighted summation:

f(s) = Σi,j

w1 ∗ ndvi(bs(vi,j))

+ w2 ∗ acca(bs(vi,j)))

+ w3 ∗ ndvi(fs(vi,j))

+ w4 ∗ acca(fs(vi,j))

+ w5 ∗ date∆(bs(vi,j), fs(vi,j))

+ w6 ∗ cover(bs(vi,j), fs(vi,j))

+ w7 ∗ date∆(bs(vi,j), bs(north(vi,j)))

+ w8 ∗ date∆(bs(vi,j), bs(east(vi,j)))

+ w9 ∗ doy∆(bs(vi,j), bs(north(vi,j)))

+ w10 ∗ doy∆(bs(vi,j), bs(east(vi,j)))

+ w11 ∗ IsL5(bs(vi,j)

+ w12 ∗ IsL7(bs(vi,j)

w1 andw2 govern the importance of the quality of individual
base images.w3 −w6 discount the value of an image based
on the quality of the fill, and on the goodness of fit between
base and fill. For L5 images, where the base and fill are the
same, the discount is the same as(w2 + w4)acca(bs(vi,j)),
etc. Notice that since we assume that the temporal and spa-
tial match between an image and itself is perfect, L5 images
are not discounted on these criteria.w7 − w10 deal with
compatibility of bases with adjacent images (we ignore the
compatibilities of fill), andw11 andw12 allow for an ab-
solute preference for L5 or L7 images to be expressed. An
optimal solutions∗ to this GMG problem is one that receives
the maximum score based on this function.

Complexity
Computationally, the problem solved by GMG is similar in
structure to the assignment of frequencies to radio trans-
mitters (Cabonet al. 1999), and other generalizations of
the map coloring problem. To evaluate the complexity of
the GMG-COP it is relevant to consider recent theoretical



results pertaining to the transformation of inputs to opti-
mization problems into tree-like structures and solving them
by applying dynamic programming techniques. In cases
in which it can be shown that a “width” parameter related
to the acyclicity of the input graph is bounded for a class
of problem, the solution can be found in polynomial time.
This approach has been used to solve graph problems in
general (Hicks, Koster, & Kolotoglu 2005) and in partic-
ular CSPs (Samer & Szeider 2006) and COPs (Larrosa &
Dechter 2003).

Bucket elimination(Dechter 2003) (BE) is an example of
this approach; it is a complete dynamic programming algo-
rithm that has been applied to solving COPs. It is based on
the process of incrementally replacing variables with con-
straints that summarize the effect of the variable on finding
the optimal solution. Given an ordering of the variables, this
processing occurs in reverse order. The worst case time and
space complexity is tightly bounded by a parameter of the
problem called theinduced width, which arises out of an or-
dering of the variables. Specifically, complexity of bucket
elimination isO(n ∗ dw+1), wheren is the number of vari-
ables,d is the size of the largest domain, andw is the in-
duced width. In practice, the primary drawback in perfor-
mance is space; only problems with small induced width
can be solved.

Given a set of variables and associated constraints, find-
ing the ordering of the variables with aminimum induced
width is an NP-hard problem. Although to our knowledge
no proof exists, it appears that the induced width of a con-
straint graph arranged as a square grid of sizen × n is n.
This linear growth rate imposes a practical limitation on the
size of problems Bucket Elimination to roughlyn = 30,
too small for the GMG problem (Larrosa 2007). Hybrid
approaches that combine BE with Branch and Bound have
demonstrated an improvement in performance over pure BE
for problems with a grid structure (Larrosa, Morancho, &
Niso 2005). Although these results may justify the applica-
tion of these methods to the GMG problem, in this paper we
limit our attention to local search.

Local Search Solution
Reasons for adopting a local search solution to constraint
optimization problems are well documented: they include

1. Anytime performance:On average, local search behaves
well in practice, yielding low-order polynomial running
times (Aarts & Lenstra 1997). Because the criteria space
is high-dimensional, it is difficulta priori to quantitatively
characterize globally preferred solutions. Consequently,
our customers were interested in a system that could ex-
amine large parts of the search space quickly to determine
weight settings that produced adequate results.

2. Flexibility and ease of implementation:Our customers re-
quired us to build, and demonstrate the advantages of, au-
tomated solutions in a short period of time (2 months).
Local search can be easily implemented.

3. Ability to solve large problems:As optimization problems
go, the GMG-COP can be considered large. Local search
has been shown to be effective on large problems.

Local search defines a class of approximation algorithms
that can find near-optimal solutions within reasonable run-
ning times. (The Simplex Algorithm for solving Linear Pro-
gramming problems is an example of local search.) Given
the pair(S, f), whereS is the set of solutions andf is the
objective function, letS∗ be the set of best solutions (i.e.,
the ones with the highest score according tof ), andf∗ be
the best score. Members ofS∗ are calledglobal optima.
Local search iteratively searches through the setS to find a
local optimalsolution, a solution for which no better can be
found. Local optima need not be in general members ofS∗.

To conduct the search, local search relies on the notion
of a neighborhood function, N : S → S, a function that
takes one solution (called thecurrent solution) and returns a
new solution that differs from the current in some small way.
To be effective, a neighborhood function should be simple;
it should not require a lot of time to compute. For GMG-
COP, the neighborhood function randomly selects a cell and
replaces the selected image with a new one. A neighborhood
function isexactif every local optima it finds as the result of
search is a global optima. The neighborhood function used
to solve GMG-COP is not exact.

Designing a local search algorithm is based on deciding
three components: how an initial solution, orseedis gener-
ated, how to select a neighboring solution, and when to ter-
minate search. For the GMG solver described in this paper,
we took a simple approach to deciding these issues, reason-
ing that complexity should be introduced only as needed,
i.e., only as warranted by inferior performance of simpler
approaches.

First, a good design for a seed generator is one that in-
tuitively starts in a good locationin the search space. A
good location is one that is relatively close to optimal solu-
tions, where close is measured by the length of the path from
it to an optimal solution using the neighborhood function.
For the GMG-COP, we assumed that a good place to start a
search should be a solution that picks the highest individual
quality image for each cell, ignoring preferences related to
adjacency.

Choosing a neighboring solution requires, first, choosing
which cell to change. The simplest approach is to pick the
cell at random. Since local search is “memoryless”, in the
sense that it does not keep track of where it’s been previ-
ously, it may not be able in general to avoid examining the
same solution multiple times. To avoid this, sometimes al-
gorithms have “taboo” lists, lists of variables recently cho-
sen to change. Variables are put on the list after chosen and
eventually taken off after some number of iterations. Vari-
ables on the list can’t be selected on a given iteration. In our
implementation we applied an extreme case of “taboo” list:
once a scene is selected for examination, it is immediately
placed on the taboo list (conceptually) to allow for all other
scenes to be examined in the current iteration (pass over all
scenes in random order).

Given a selected cell, there are also a number of ways
to select among the set of neighboring solutions based on
changes made to that cell. Some are deterministic; i.e.,
given the same decision to make, the algorithm will make the
same choice each time. Others are non-deterministic. Algo-



rithms such as simulated annealing and genetic algorithms
are non-deterministic. Initially, we opted for a deterministic
approach, of which there are two kinds: first improvement
or best improvement. First improvement examines neigh-
bors, in a local search sense, until one is found that is better
than the current solution; that one becomes the new current
solution. Best improvement examines all the neighbors, and
picks the one that improves upon the current solution the
most. Either of these generates agreedyapproach, one that
always chooses an improving solution. A variation of best
improvement is where a neighbor with the best score is cho-
sen, even if the score is worse than the score of the current
solution. Notice that this variant is not strictly greedy. It is
sometimes preferred because it allows for the possibility that
a globally optimal solution may not be on the “greedy path”
from an initial seed solution.

Finally, choosing a termination condition requires decid-
ing how many solutions will be generated before the algo-
rithm halts. The simplest approach will be to define a ter-
mination condition that sayshalt when you reach the first
locally optimal solution or after a fixed number of solu-
tions,MAX , have been generated, whichever comes first.
A slightly more sophisticated version of thissimple local
searchis calledmulti-start: here, for some fixed number of
runs, we start with different initial (seed) solutions. Such
initial solutions can be fully randomly generated (our imple-
mentation), semi-randomly generated, or deterministically
generated. An example of deterministically generated initial
solutions employed here is to assign to each scene the best
self-quality image/pair. Alternatively, the local optimum of
one run of simple local search can be used as the initial so-
lution for the next run. A simple local search algorithm, and
the first and best improvement routines embedded within it,
are presented below. (N(S, c) is the set of all solutionsS′

where only the assignment to the scene cellc is changed.)

Iterative first improvement (S)
bestI = S
Loop over all scene cells, c, in random order

For eachS′ ∈ N(S, c)
if f(S′) > f(bestI) bestI = S′; continue;

end loop
returnbestI

Iterative best improvement (S)
bestI = S
Loop over all scene cells, c, in random order

For eachS′ ∈ N(S, c)
if f(S′) > f(bestI) bestI = S′;

end loop
returnbestI

Simple Local search(MaxPasses)
bestS = seedS
For up to MaxPasses iterations do

S′ = Iterative first (or best) improvement (bestS)
if S′ = bestS returnbestS; (local minimum reached)
elsebestS = S′;

returnbestS

Testing and Results
Testing the GMG-COP occurred in two stages. First, we
were interested in the extent of the improvement offered by
an automated solution over current practice, which consists
of manually generating solutions. Towards this end, tests
were conducted by the customers at USGS and the Landsat
mission using the GeoCover-2000 (GC2K) data set. The re-
sults showed that GMG, implemented as a simple algorithm
then which we later improved significantly, produced a solu-
tion that was 23% better quality than the manually generated
solution, based on the objective function scores. The cus-
tomers viewed this result as significant enough to warrant
further experiments.

The purpose of the follow-on experiments was to com-
pare different variations in multi-start local search to deter-
mine the best performing algorithm. Four different multi-
start local search variants were tested, based on two varia-
tions of two criteria: the initial solution and the choice of
neighbor. These are standard ways of varying local search,
representing tradeoffs between exploration and exploitation
of domain knowledge. The initial solutions tried were a ran-
domly generated solution (R) and the solution consisting of
the set of images that scored highest individually (i.e. with
respect to cloud cover, NDVI, and base–fill quality) (S). The
choice of neighbor was either done on a “first improvement”
(F) basis, i.e., the first alternative that improved the overall
score, or “best improvement” basis, i.e., of all the images,
selecting the one that most improved the score (B). The re-
sult was 4 variations, called RB, RF, SB, and SF.

These experiments were conducted on a subset of the mid-
decadal Landsat data set consisting of 197 scenes over North
America. 10000 separate starts of each algorithm were con-
ducted, with different random seeds.

The results are shown in Figure 1. The results indicate
that the best strategy for finding high quality solutions is
through exploration: with a random initial solution, and
an exhaustive search for the best neighbor (RB), progress
was quickly made towards solutions with higher quality
than those found by the other approaches. Somewhat sur-
prisingly, starting with a good solution (SB, SF) hindered
the performance through failure to escape from local op-
tima. Further, both performed about equally, indicating that
the extra examination of neighbors conducted by the best-
neighbor approach did not help. Less surprisingly, random
initial solution with first best (RF) performed the worst, not
exploring enough of the space of neighboring solutions.

Because this experiment was conducted on a single data
set, the results are clearly preliminary. Future tests on larger
and/or different subsets of the mid-decadal data set are being
planned, as well as tests on other data sets.

Summary and Future Work
The global map generation problem provides an ideal do-
main for testing and evaluating constraint-based optimiza-
tion solvers. Furthermore, the GMG solver is of significant
potential benefit to the Earth Science research community,
allowing scientists access to improved automated tools to
study the Earth’s changing eco-system.



Figure 1: Comparison of performance of four versions of multi-start local search GMG: random initial solution with best
improvement among neighbor scenes (RB), random initial solution with first improvement (RF), initial solution with highest
individually scoring scenes with best improving (SB) and with first improving neighbor (SF). Best solution found so far at each
of 10000 runs.

Based on a successful application of the GMG on the mid-
decadal global Landsat data set, the GMG will then be used
for additional data set projects as well. One such mapping
application has to do with the USGS goal to create a state
mosaic for all 50 states in the US. The use of GMG has the
potential of automating a large part of that effort, viz., scene
selection. Due to the scanner failure on Landsat 7, GMG
will greatly reduce the labor necessary to exploit the Landsat
data archive; and, as the Landsat 7 mission is expected to go
to 2012, the benefit of the GMG cannot be overstated.

Despite satisfaction with the local search GMG, the cus-
tomers at USGS and Landsat have expressed an interest in
a version of GMG that uses a complete technique, i.e., that
potentially examines the entire space of solutions. As noted
earlier, a hybrid approach combining BE with Branch and
Bound seems to be the most promising complete approach
currently being explored. Future reports will focus on the
results of applying complete approaches to solving GMG.
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